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Abstract
In this paper we are concerned with rational solutions, algebraic solutions
and associated special polynomials with these solutions for the third Painlevé
equation (PIII). These rational and algebraic solutions of PIII are expressible
in terms of special polynomials defined by second-order, bilinear differential-
difference equations which are equivalent to Toda equations. The structure of
the roots of these special polynomials is studied and it is shown that these have
an intriguing, highly symmetric and regular structure. Using the Hamiltonian
theory for PIII, it is shown that these special polynomials satisfy pure difference
equations, fourth-order, bilinear differential equations as well as differential-
difference equations. Further, representations of the associated rational
solutions in the form of determinants through Schur functions are given.

PACS number: 02.30.−f
Mathematics Subject Classification: 33E17, 34M35

1. Introduction

In this paper we are concerned with rational solutions and associated special polynomials for
the third Painlevé equation (PIII)

w′′ = (w′)2

w
− w′

z
+

αw2 + β

z
+ γw3 +

δ

w
(1.1)

where ′ ≡ d/dz and α, β, γ and δ are arbitrary constants. We remark that letting w(z) =
y(x)/

√
x, with x = 1

4z2, in PIII yields

d2y

dx2 = 1

y

(
dy

dx

)2

− 1

x

dy

dx
+

αy2

2x2
+

β

2x
+

γy3

x2
+

δ

y
(1.2)

which is known as PIII′ (cf Okamoto [79]) and is often used to determine properties of solutions
of PIII. However (1.2) has algebraic solutions rather than rational solutions [68].
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The six Painlevé equations (PI–PVI) were discovered by Painlevé, Gambier and their
colleagues whilst studying second-order ordinary differential equations of the form

w′′ = F(z,w,w′) (1.3)

where F is rational in w′ and w and analytic in z. The Painlevé equations can be thought of as
nonlinear analogues of the classical special functions. Indeed Iwasaki et al [45] characterize
the six Painlevé equations as ‘the most important nonlinear ordinary differential equations’ and
state that ‘many specialists believe that during the twenty-first century the Painlevé functions
will become new members of the community of special functions’. The general solutions of
the Painlevé equations are transcendental in the sense that they cannot be expressed in terms of
known elementary functions and so require the introduction of a new transcendental function
to describe their solution.

Although first discovered from strictly mathematical considerations, the Painlevé
equations have arisen in a variety of important physical applications, including statistical
mechanics, plasma physics, nonlinear waves, quantum gravity, quantum field theory, general
relativity, nonlinear optics and fibre optics. Further the Painlevé equations have attracted much
interest since they arise in many physical situations and as reductions of the soliton equations
which are solvable by inverse scattering (cf [1, 3], and references therein, for further details).
Much of the current interest of the Painlevé equations is due to Wu, Tracy, McCoy and Barouch
[94, 65], who showed that PIII appears in the theory of the Ising model, and Ablowitz and Segur
[2], who demonstrated a close connection between completely integrable partial differential
equations solvable by inverse scattering, the soliton equations, and the Painlevé equations.

It is well known that PII–PVI possess hierarchies of rational solutions for special values
of the parameters (see, e.g., [6, 7, 11, 25, 30, 40, 41, 55, 61, 64, 66–68, 76–79, 90–93, 95, 97]
and the references therein). These hierarchies are usually generated from ‘seed solutions’
using the associated Bäcklund transformations and frequently can be expressed in the form of
determinants through ‘τ -functions’.

Vorob’ev [92] and Yablonskii [95] expressed the rational solutions of the second Painlevé
equation (PII)

w′′ = 2w3 + zw + α (1.4)

where α is an arbitrary constant, in terms of the logarithmic derivative of certain polynomials
which are now known as the Yablonskii–Vorob’ev polynomials. Okamoto [78] obtained
analogous polynomials related to some of the rational solutions of PIV; these polynomials
are now known as the Okamoto polynomials. Further Okamoto noted that they arise from
special points in parameter space from the point of view of symmetry, which is associated
with the affine Weyl group of type A

(2)
2 . Umemura [89] associated analogous special

polynomials with certain rational and algebraic solutions of PIII, PV and PVI which have similar
properties to the Yablonskii–Vorob’ev polynomials and the Okamoto polynomials; see also
[70, 87, 96]. Subsequently there have been several studies of special polynomials associated
with the rational solutions of PII [30, 48, 50, 83], the rational and algebraic solutions
of PIII [49, 73], the rational solutions of PIV [30, 51, 72], the rational solutions of PV

[63, 71] and the algebraic solutions of PVI [53, 54, 62, 84, 85]. However the majority of
these papers are concerned with the combinatorial structure and determinant representation of
the polynomials, often related to the Hamiltonian structure and affine Weyl symmetries of the
Painlevé equations. Typically these polynomials arise as the τ -functions for special solutions
of the Painlevé equations and are generated through nonlinear, three-term recurrence relations
which are Toda-type equations that arise from the associated Bäcklund transformations of
the Painlevé equations. The coefficients of these special polynomials have some interesting,
indeed somewhat mysterious, combinatorial properties (see [70, 87, 89]). Additionally these
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polynomials have been expressed as special cases of Schur polynomials, which are irreducible
polynomial representations of the general linear group GL(n) and arise as τ -functions of
the Kadomtsev–Petviashvili (KP) hierarchy [47]. The Yablonskii–Vorob’ev polynomials
associated with PII are expressible in terms of 2-reduced Schur functions [48, 50], and are
related to the τ -function for the rational solution of the modified Korteweg-de Vries (mKdV)
equation since PII arises as a similarity reduction of the mKdV equation. Further, in [21],
it is shown that the roots of these Yablonskii–Vorob’ev polynomials have a very symmetric,
regular structure. The Okamoto polynomials associated with PIV are expressible in terms of
3-reduced Schur functions [51, 72] since PIV arises as a similarity reduction of the Boussinesq
equation (cf [20]), which belongs to the so-called 3-reduction of the KP hierarchy [47].

It is also well known that PII–PVI possess solutions which are expressible in terms of the
classical special functions; these are often referred to as ‘one-parameter families of solutions’.
For PII these special function solutions are expressed in terms of Airy functions Ai(z)
[6, 24, 31, 78], for PIII in terms of Bessel functions Jν(z) [58, 66, 68, 79], for PIV in terms of
Weber–Hermite (parabolic cylinder) functions Dν(z) [11, 39, 57, 67, 78], for PV in terms of
Whittaker functions Mκ,µ(z), or equivalently confluent hypergeometric functions 1F1(a; c; z)

[59, 36, 77, 93], and for PVI in terms of hypergeometric functions 2F1(a, b; c; z) [27, 60, 76];
see also [1, 37, 40–42]. Some classical orthogonal polynomials, hereafter referred to as
classical polynomials, arise as particular cases of these special function solutions and thus
yield rational solutions of the associated Painlevé equations, especially in the representation
of rational solutions through determinants. For PIII and PV these are in terms of associated
Laguerre polynomials L(k)

n (z) [17, 49, 63, 71], for PIV in terms of Hermite polynomials Hn(z)

[11, 51, 67, 78] and for PVI in terms of Jacobi polynomials P
(α,β)
n (z) [62, 85]. In fact all

rational solutions of PVI arise as particular cases of the special solutions given in terms of
hypergeometric functions [64].

This paper is organized as follows. The special polynomials associated with rational
solutions of PIII, which occur in the generic case when γ δ �= 0, are studied in section 2.
Using the Hamiltonian theory for PIII, it is shown that these special polynomials also satisfy
both differential equations and difference equations. Further these special polynomials are
related to the determinantal form of rational solutions of PIII. In section 3 we study the special
polynomials associated with algebraic solutions of PIII, which occur in the cases when either
γ = 0 and αδ �= 0, or δ = 0 and βγ �= 0. Again, using Hamiltonian theory, it is shown that
these special polynomials also satisfy both differential equations and difference equations.
Finally in section 4 we discuss our results and pose some open questions.

2. Rational solutions of PIII

2.1. Introduction

In this section we consider the generic case of PIII when γ δ �= 0, then set γ = 1 and δ = −1,
without loss of generality (by rescaling w and z if necessary), and so consider

w′′ = (w′)2

w
− w′

z
+

αw2 + β

z
+ w3 − 1

w
. (2.1)

The location of rational solutions for the generic case of PIII given by (2.1) is stated in the
following theorem.

Theorem 2.1. Equation (2.1), i.e. PIII with γ = −δ = 1, has rational solutions if and
only if α + εβ = 4n, with n ∈ Z and ε = ±1. These rational solutions have the form
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w = Pm(z)/Qm(z), where Pm(z) and Qm(z) are polynomials of degree m with no common
roots.

Proof. See Gromak et al [41], p 174 (see also [66, 68, 91]). �

Hierarchies of rational solutions of the Painlevé equations can be obtained by applying
Bäcklund transformations to ‘seed solutions’. The Bäcklund transformations of PIII, which
relate two solutions of PIII with different values of the parameters, are defined as follows.
Suppose w = w(z;α, β, 1,−1) is a solution of PIII, then w[j ] = w[j ](z;α[j ], β[j ], 1,−1),
j = 1, 2, . . . , 6, are also solutions of PIII where

T [1]: w[1] = zw′ + zw2 − βw − w + z

w(zw′ + zw2 + αw + w + z)

α[1] = α + 2 β[1] = β + 2

(2.2)

T [2]: w[2] = − zw′ − zw2 − βw − w + z

w(zw′ − zw2 − αw + w + z)

α[2] = α − 2 β[2] = β + 2

(2.3)

T [3]: w[3] = − zw′ + zw2 + βw − w − z

w(zw′ + zw2 + αw + w − z)

α[3] = α + 2, β[3] = β − 2

(2.4)

T [4]: w[4] = zw′ − zw2 + βw − w − z

w(zw′ − zw2 − αw + w − z)

α[4] = α − 2, β[4] = β − 2

(2.5)

T [5]: w[5] = −w α[5] = −α β[5] = −β (2.6)

T [6]: w[6] = 1/w α[6] = −β β[6] = −α (2.7)

[34, 35] (see also [66, 68, 91] and the references therein).
We remark that the rational solutions of the generic case of PIII (2.1) lie on the lines α+εβ =

4n in the α–β plane, rather than isolated points as is the case for PIV. Thus the Bäcklund
transformations (2.3) and (2.4) map a rational solutions to itself. Further, equation (2.1)
is of type D6 in the terminology of Sakai [81], who studied the Painlevé equations through a
geometric approach based on rational surfaces.

2.2. Associated special polynomials

Umemura [89], see also [49, 70, 87], derived special polynomials associated with rational
solutions of PIII, which are defined in theorem 2.2; though as explained below these are
actually polynomials in 1/z rather than z. Further Umemura states that these ‘polynomials’
are the analogues of the Yablonskii–Vorob’ev polynomials associated with rational solutions
of PII and the Okamoto polynomials associated with rational solutions of PIV.

Theorem 2.2. Suppose that Tn(z;µ) satisfies the recursion relation

zTn+1Tn−1 = −z

[
Tn

d2Tn

dz2
−

(
dTn

dz

)2
]

− Tn

dTn

dz
+ (z + µ)T 2

n (2.8)
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Table 1. Polynomials Tn(1/ξ ; µ) associated with rational solutions of PIII due to Umemura [89].

T1(1/ξ ; µ) = 1 + µξ

T2(1/ξ ; µ) = 1 + 3µξ + 3µ2ξ2 + µ(µ2 − 1)ξ3

T3(1/ξ ; µ) = 1 + 6µξ + 15µ2ξ2 + 5µ(4µ2 − 1)ξ3 + 15µ2(µ2 − 1)ξ4 +
3µ(µ2 − 1)(2µ2 − 3)ξ5 + µ2(µ2 − 1)(µ2 − 4)ξ6

T4(1/ξ ; µ) = 1 + 10µξ + 45µ2ξ2 + 15µ(8µ2 − 1)ξ3 + 105µ2(2µ2 − 1)ξ4 +
63µ(µ2 − 1)(4µ2 − 1)ξ5 + 105µ2(µ2 − 1)(2µ2 − 3)ξ6 +
15µ(µ2 − 1)(8µ4 − 27µ2 + 15)ξ7 + 45µ2(µ2 − 1)(µ2 − 2)(µ2 − 4)ξ8 +
5µ3(µ2 − 1)(µ2 − 4)(2µ2 − 11)ξ9 + µ2(µ2 − 1)2(µ2 − 4)(µ2 − 9)ξ10

Table 2. Rational solutions of PIII arising from the polynomials in table 1.

w0(z; µ) = 1

w1(z; µ) = 1 − 1

z + µ

w2(z; µ) = 1 +
1

z + µ − 1
− 3(z + µ)2

(z + µ)3 − µ

w3(z; µ) = 1 +
3(z + µ − 1)2

(z + µ − 1)3 − µ + 1
− 6(z + µ)5 − 15µ(z + µ)2 + 9µ

(z + µ)6 − 5µ(z + µ)3 + 9µ(z + µ) − 5µ2

with T−1(z;µ) = 1 and T0(z;µ) = 1. Then

wn(z;µ) ≡ w(z;αn, βn, 1,−1) = 1 +
d

dz

{
ln

[
Tn−1(z;µ − 1)

znTn(z;µ)

]}
= Tn(z;µ − 1)Tn−1(z;µ)

Tn(z;µ)Tn−1(z;µ − 1)
(2.9)

satisfies PIII, with αn = 2n + 2µ − 1 and βn = 2n − 2µ + 1.

Remark 2.3

(i) The first few polynomials Tn(1/ξ ;µ), where z = 1/ξ , for PIII defined by (2.8) are given
in table 1 and associated rational solutions of PIII are given in table 2.

(ii) It is clear from the recurrence relation (2.8) that the Tn (z;µ) are rational functions, though
it is not obvious that in fact they are polynomials in ξ = 1/z, since one is dividing by
Tn−1(z;µ) at every iteration. Indeed it is somewhat remarkable that Tn(1/ξ ;µ) defined
by (2.8) are polynomials in ξ .

(iii) The recurrence relation (2.8) for Tn(z;µ) can be rewritten in the form[
z

2
D2

z +
1

2

d

dz
− (z + µ)

]
Tn • Tn = −zTn+1Tn−1 (2.10)

where Dz is the Hirota operator defined by

DzF (z) • G(z) =
[(

d

dz1
− d

dz2

)
F(z1)G(z2)

]
z1=z2=z

. (2.11)

(iv) Making the transformation

Tn(z) = exp
(

1
4z2 + µz + 1

2n2 ln z
)
τn(z)

in (2.8) yields the Toda equation

d

dz

(
z

d

dz
ln τn

)
+

τn+1τn−1

τ 2
n

= 0. (2.12)
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(v) The hierarchy of rational solutions of PIII given in table 2 can also be derived using the
Bäcklund transformation T [1] (2.2), i.e.

wn+1 = zw′
n + zw2

n − 2(n − µ + 1)wn + z

wn

[
zw′

n + zw2
n + 2(n + µ)wn + z

]
αn = 2n + 2µ − 1 βn = 2n − 2µ + 1

(2.13)

where wm ≡ w(z;αm, βm, 1,−1), with ‘seed solution’

w0(z;α0, β0; 1;−1) = 1 α0 = 2µ − 1 β0 = −2µ + 1.

The inverse transformation, derived from the Bäcklund transformation T [4] (2.5), is

wn−1 = zw′
n − zw2

n + 2(n − µ)wn − z

wn

[
zw′

n − zw2
n − 2(n + µ − 1)wn − z

] . (2.14)

Hence eliminating w′
n between (2.13) and (2.14) yields the difference equation

2n + 1

wnwn+1 − 1
+

2n − 1

wnwn−1 − 1
+ zwn + 2n + 2µ +

z

wn

= 0. (2.15)

Setting wn = ivn and z = ix yields

2n + 1

vnvn+1 + 1
+

2n − 1

vnvn−1 + 1
+ xvn − 2(n + µ) − x

vn

= 0 (2.16)

which is an alternative dPII [22, 26, 69].
(vi) The rational solution wn(z) has the form wn = Pn2(z)/Qn2(z), where Pn2(z) and Qn2(z)

are polynomials of degree n2 with no common roots.

The ‘polynomials’ Tn(z;µ) are somewhat unsatisfactory since they are polynomials
in ξ = 1/z rather than polynomials in z, which would be more natural and is the
case for the Yablonskii–Vorob’ev polynomials and Okamoto polynomials associated with
rational solutions of PII and PIV, respectively. Umemura [89] makes the transformation
Tn(z;µ) = T̃n(ξ ;µ), with z = 1/ξ . Then T̃n(ξ ;µ) are polynomials in ξ and satisfy
the differential-difference equation

T̃n+1T̃n−1 + ξ 4

[
T̃n

d2T̃n

dξ 2
−

(
dT̃n

dξ

)2
]

+ ξ 3T̃n

dT̃n

dξ
− (1 + µξ)T̃ 2

n = 0

with T̃0 = 1 and T̃1 = 0, though this approach requires that a transformation is made to
PIII. However it is straightforward to determine a sequence of functions Sn(z;µ), which are
generated through an equation, that are polynomials in z and also do not require that PIII is
transformed. These are given in the following theorem.

Theorem 2.4. Suppose that Sn(z;µ) satisfies the recursion relation

Sn+1Sn−1 = −z

[
Sn

d2Sn

dz2
−

(
dSn

dz

)2
]

− Sn

dSn

dz
+ (z + µ)S2

n (2.17)

with S−1(z;µ) = S0(z;µ) = 1. Then

wn = w(z;αn, βn, 1,−1) = 1 +
d

dz

{
ln

[
Sn−1(z;µ − 1)

Sn(z;µ)

]}
≡ Sn(z;µ − 1)Sn−1(z;µ)

Sn(z;µ)Sn−1(z;µ − 1)
(2.18)
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Table 3. Polynomials associated with rational solutions of PIII.

S1(z; µ) = z + µ

S2(z; µ) = (z + µ)3 − µ

S3(z; µ) = (z + µ)6 − 5µ(z + µ)3 + 9µ(z + µ) − 5µ2

S4(z; µ) = (z + µ)10 − 15µ(z + µ)7 + 63µ(z + µ)5 − 225µ(z + µ)3 +
315µ2(z + µ)2 − 175µ3(z + µ) + 36µ2

S5(z; µ) = (z + µ)15 − 35µ(z + µ)12 + 252µ(z + µ)10 + 175µ2(z + µ)9 −
2025µ(z + µ)8 + 945µ2(z + µ)7 − 1225µ(µ2 − 9)(z + µ)6 −
26082µ2(z + µ)5 + 33075µ3(z + µ)4 −
350µ2(35µ2 + 36)(z + µ)3 + 11340µ3(z + µ)2−
225µ2(49µ2 − 36)(z + µ) + 7µ3(875µ2 − 828)

satisfies PIII with αn = 2n + 2µ − 1 and βn = 2n − 2µ + 1 and

ŵn = w(z; α̂n, β̂n, 1,−1) = 1 +
d

dz

{
ln

[
Sn−1(z;µ)

Sn(z;µ − 1)

]}
≡ Sn(z;µ)Sn−1(z;µ − 1)

Sn(z;µ − 1)Sn−1(z;µ)
(2.19)

satisfies PIII with α̂n = −2n + 2µ − 1 and β̂n = −2n − 2µ + 1.

Proof. This result essentially follows from theorem 1 due to Kajiwara and Masuda [49]
since equation (2.17), modulo a scaling factor, is equation (16) in proposition 3 of [49];
see also remark 2.7. Further, note that ŵn = 1/wn, which is a consequence of the Bäcklund
transformation (2.7). However, we believe that the polynomials Sn(z;µ) have not been written
down previously.

The first few polynomials Sn(z;µ), which are monic polynomials of degree 1
2n(n + 1),

are given in table 3. The associated rational solutions of PIII are given in table 2. The
rational solutions of PIII defined by (2.18) and (2.19) can be generalized using the Bäcklund
transformation (2.6) to include all those described in theorem 2.1 satisfying the condition
α + β = 4n. Rational solutions of PIII satisfying the condition α − β = 4n are obtained by
letting w → iw and z → iz in (2.18) and (2.19), and then using the Bäcklund transformation
(2.6). Thus

w∗
n = w(z;α∗

n, β
∗
n, 1,−1) = i +

d

dz

{
ln

[
Sn−1(iz;µ − 1)

Sn(iz;µ)

]}
≡ i

Sn(iz;µ − 1)Sn−1(iz;µ)

Sn(iz;µ)Sn−1(iz;µ − 1)
(2.20)

satisfies PIII with α∗
n = 2µ + 2n − 1 and β∗

n = 2µ − 2n − 1 and

ŵ∗
n = w(z; α̂∗

n, β̂
∗
n, 1,−1) = i +

d

dz

{
ln

[
Sn−1(iz;µ)

Sn(iz;µ − 1)

]}
≡ i

Sn(iz;µ)Sn−1(iz;µ − 1)

Sn(iz;µ − 1)Sn−1(iz;µ)
(2.21)

satisfies PIII with α̂∗
n = 2µ − 2n − 1 and β̂∗

n = 2µ + 2n − 1. We note that ŵn = −1/wn, due
to the Bäcklund transformations (2.6) and (2.7).

In figures 1–3 plots of the roots of the polynomials S3(ξ − µ,µ), S4(ξ − µ,µ)

and S5(ξ − µ,µ) defined by (2.3) for various µ are given, respectively. Initially for
µ = −2, µ = −3 and µ = −3.5, respectively, there is an approximate triangle with 3, 4
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Figure 1. Roots of the polynomial S3(ξ − µ,µ) for various µ.
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Figure 2. Roots of the polynomial S4(ξ − µ,µ) for various µ.
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Figure 3. Roots of the polynomial S5(ξ − µ,µ) for various µ.
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and 5 roots, respectively, on each side. Then as µ increases, the roots then in turn coalesce
and eventually give for µ = 2, µ = 3 and µ = 3.5, respectively, another approximate triangle
with its orientation reversed—see remark 2.5(vi). �

Remark 2.5

(i) The polynomials Sn(z;µ) defined by (2.17) are related to Tn(z;µ) defined by (2.8) through
Sn(z;µ) = zn(n+1)/2Tn(z;µ). In view of this, it is a little surprising that Tn(z;µ), rather
than Sn(z;µ), appear in [49, 70, 87, 89].

(ii) The polynomials Sn(z;µ) have the property that Sn(z;µ) = Sn(−z;−µ).
(iii) It is clear from the recurrence relation (2.17) that the Sn(z;µ) are rational functions, though

it is not obvious that in fact they are polynomials since one is dividing by Sn−1(z;µ) at
every iteration. Indeed it is somewhat remarkable that the Sn(z;µ) defined by (2.17) are
polynomials.

(iv) The recurrence relation (2.17) for the polynomials Sn(z;µ) can be rewritten in the form[
z

2
D2

z +
1

2

d

dz
− (z + µ)

]
Sn • Sn = −Sn+1Sn−1 (2.22)

where Dz is the Hirota operator defined by (2.11).
(v) Making the transformation Sn(z;µ) = exp

(
1
4z2 + µz

)
τn(z) in (2.8) yields the Toda

equation (2.12).
(vi) It is straightforward to determine when the roots of S3(z;µ)–S5(z;µ) coalesce using

discriminants of polynomials. Let f (z) = zm + am−1z
m−1 + · · · + a1z + a0 be a monic

polynomial of degree m with roots α1, α2, . . . , αm, so f (z) = ∏m
j=1(z − αj ). Then the

discriminant of f is

Dis(f ) =
∏

1�j<k�m

(αj − αk)
2.

Hence the polynomial f has a multiple root when Dis(f ) = 0. It is straightforward to
show that

Dis(S3(z;µ)) = 31255µ6(µ2 − 1)2

Dis(S4(z;µ)) = 32752077µ14(µ2 − 1)6(µ2 − 4)2

Dis(S5(z;µ)) = 366545728µ26(µ2 − 1)14(µ2 − 4)6(µ2 − 9)2.

Thus S3(z;µ) has multiple roots when µ = 0,±1 (at z = 0), S4(z;µ) when µ = 0,

±1,±2 (at z = 0), and S5(z;µ) when µ = 0,±1,±2,±3 (at z = 0). These are the
values of µ for which the roots of S3(z;µ)–S5(z;µ) coalesce in figures 1–3, respectively.

2.3. Hamiltonian theory for PIII

The Hamiltonian associated with PIII is [75, 78] (see also [28])

HIII = p2q2 − zpq2 − (β − 1)pq + zp + 1
2 (β − 2 − α)zq (2.23)

and so from Hamilton’s equations

z
dq

dz
= ∂HIII

∂p
z

dp

dz
= −∂HIII

∂p
(2.24)

we obtain the system

z
dq

dz
= 2pq2 − zq2 − (β − 1)q + z

z
dp

dz
= −2p2q + 2zpq + (β − 1)p − 1

2
(β − 2 − α)z.

(2.25)
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Setting q = w and eliminating p in this system yields PIII (2.1). Setting p(z) = √
x/[1−y(x)],

with x = z2, and eliminating q yields PV

d2y

dx2
=

(
1

2y
+

1

y − 1

)(
dy

dx

)2

− 1

x

dy

dx
+

(y − 1)2

x2

(
ay +

b

y

)
+

cy

x
+

dy(y + 1)

y − 1
(2.26)

with

a = (α − β + 2)2/32 b = −(α + β − 2)2/32 c = − 1
2 d = 0.

It is well known that PV (2.26) with d = 0 is equivalent to PIII [35, 41].
Next, following Jimbo and Miwa [46] and Okamoto [75, 78], we define the auxiliary

Hamiltonian function σ by

σ = 1
2 HIII + 1

2pq + 1
8 (β − 2)2 − 1

4z2 (2.27)

where p and q satisfy the Hamiltonian system (2.25). Then σ satisfies the second-order,
second-degree equation given by

(zσ ′′ − σ ′)2 + 4(σ ′)2(zσ ′ − 2σ) + 4zλ1σ
′ − z2(zσ ′ − 2σ + 2λ0) = 0 (2.28)

with λ1 = − 1
4α(β − 2) and λ0 = 1

8α2 + 1
8 (β − 2)2, which is sometimes referred to as the

‘Jimbo–Miwa–Okamoto σ -equation’. Conversely if σ is a solution of (2.28) then the solution
of the system (2.25) is

q = 2zσ ′′ + 2(1 − β)σ ′ − αz

z2 − 4(σ ′)2
p = σ ′ +

1

2
z. (2.29)

Due to the relationship between the Hamiltonian and the τ -function (see [78]), it can be shown
that solutions of (2.28) have the form

σ(z) = z
d

dz
ln

{
z1/8 exp

(
1

8
z2

)
τn(z)

}
= 1

4
z2 +

1

8
+ z

d

dz
ln τn(z)

where τn satisfies the Toda equation (2.12). Hence, since τn(z) = exp
(− 1

4z2 − µz
)
Sn(z;µ),

then rational solutions of (2.28) have the form

σn,µ(z) = −1

4
z2 − µz +

1

8
+ z

d

dz
ln Sn(z;µ) (2.30)

with λ1 = µ2 − (
n + 1

2

)2
and λ0 = µ2 +

(
n + 1

2

)2
. Note that wn, the rational solution of PIII

defined by (2.19), is related to the auxiliary Hamiltonian function σn,µ through

wn = (σn−1,µ−1 − σn,µ)/z. (2.31)

Furthermore, using proposition 4.8 in [28] (who discuss the Hamiltonian for PIII′ rather
than PIII), it can be shown that σn,µ defined by (2.30) also satisfies the following two third-order
difference equations

z2 + [σn+1,µ − σn,µ − (n + 1 + µ)][σn+1,µ − σn,µ − (n + 1 − µ)]

× (σn+1,µ − σn−1,µ)(σn+2,µ − σn,µ)

(σn+1,µ − σn−1,µ − 2n − 1)(σn+2,µ − σn,µ − 2n − 3)
= 0 (2.32)

which is a difference equation in n, and

(n + µ + 1)(n − µ)z2 + (σn,µ+1 − σn,µ−1)(σn,µ+2 − σn,µ)

×
[
(µ + 1)σn,µ − µσn,µ+1 + 1

4z2 + 1
2µ(µ + 1) − 1

2

(
n + 1

2

)2
]

= 0 (2.33)

which is a difference equation in µ.



The third Painlevé equation and associated special polynomials 9519

Multiplying (2.28) by 1/z2 and the differentiating with respect to z yields

z2σ ′′′ − zσ ′′ + 6z(σ ′)2 − 8σσ ′ + σ ′ − 1
2z3 + 2zλ1 = 0. (2.34)

Then substituting (2.30) and λ1 = µ2 − (
n + 1

2

)2
into this yields the fourth-order, bilinear

equation for Sn

z2[SnS
′′′′
n − 4S ′

nS
′′′
n + 3(S ′′

n)2] + 2z(SnS
′′′
n − S ′

nS
′′
n)

− 4z(z + µ)[SnS
′′
n − (S ′

n)
2] − 2SnS

′′
n + 4µSnS

′
n = 2n(n + 1)S2

n. (2.35)

We remark that substituting (2.30) into (2.28), yields a third-order, quad-linear equation for
Sn, which is considerably more complex than (2.35). Hence Sn satisfies the differential
equation (2.35) as well as the differential-difference equation (2.17).

Now we shall derive a pure difference equation for Sn. Consider the functions pn and qn,
which satisfy the Hamiltonian system (2.25) with α = 2n + 2µ − 1 and β = 2n − 2µ + 1, i.e.

z
dqn

dz
= 2pnq

2
n − zq2

n − 2(n − µ)qn + z

z
dpn

dz
= −2p2

nqn + 2zpnqn + 2(n − µ)pn + 2µz.

(2.36)

In terms of the auxiliary Hamiltonian function σn,µ defined by (2.30), then using (2.29) and
(2.31), it follows that qn and pn are given by

qn = (σn−1,µ−1 − σn,µ)/z pn = 1

2
z +

dσn−1,µ

dz
(2.37)

and hence from (2.17)

pn = d

dz

(
z

d

dz
ln Sn−1(z;µ)

)
− µ ≡ z − Sn(z;µ)Sn−2(z;µ)

S2
n−1(z;µ)

. (2.38)

Further, using equations (4.40)–(4.43) in the proof of proposition 4.6 in [28] (where the
Hamiltonian for PIII′ rather than PIII is discussed), it can be shown that qn and pn satisfy the
discrete system

qn+1 = 1

qn

− 2n + 1

q2
npn + 2µqn + z

(2.39)

pn+1 = −q2
npn − 2µqn (2.40)

qn−1 = pn − z

qnpn − zqn − 2n + 1
(2.41)

pn−1 = −q2
npn − 2µqn + (2qnpn − 2n + 2µ + 1)

2n − 1

pn − z
− z

(
2n − 1

pn − z

)2

. (2.42)

Solving (2.39) or (2.41) for pn and then substituting it into (2.40) or (2.42) yields the second-
order difference equation (2.15), which is equivalent to the alternative dPII (2.16), with
wn = qn. A difference equation for pn can be obtained as follows. Subtracting (2.42)
from (2.40) yields

pn+1 − pn−1 = −(2n − 1)
2qnpn − 2n + 2µ + 1

pn − z
+ z

(
2n − 1

pn − z

)2

(2.43)

and then solving for qn yields

qn = − (pn+1 − pn−1)(pn − z)2 + 2(2n − 1)µ(pn − z) − (2n − 1)2pn

2(2n − 1)pn(pn − z)
. (2.44)
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By substituting (2.38) into (2.44), then we can express qn in terms of the polynomials
Sn = Sn(z;µ)

qn =
(
Sn+1S

2
n−2 − S2

nSn−3
)
Sn−1

2(2n − 1)SnSn−2
(
SnSn−2 − zS2

n−1

) − (2n − 1 − 2µ)S2
n−1

2
(
SnSn−2 − zS2

n−1

)
+

(2n − 1)zS4
n−1

2SnSn−2
(
SnSn−2 − zS2

n−1

) . (2.45)

Since qn = wn, the solution of PIII for α = 2n + 2µ− 1, β = 2n− 2µ + 1, γ = 1 and δ = −1,
then substituting (2.45) into the difference equation (2.15) yields a sixth-order, hexa-linear
difference equation for Sn, which is omitted due to its size as it has 67 operands.

We remark that this difference equation for Sn can also be obtained by first substituting
(2.44) into (2.39), which yields the third-order difference equation for pn

(pn+2 − pn)(pn+1 − z)2 + 2(2n + 1)µ(pn+1 − z) + (2n + 1)2pn+1

2(2n + 1)pn+1(pn+1 − z)

= 2(2n − 1)pn(pn − z)

(pn+1 − pn−1)(pn − z)2 + 2(2n − 1)µ(pn − z) − (2n − 1)2pn

. (2.46)

Then substituting pn = z−SnSn−2
/
S2

n−1 into (2.38) yields a sixth-order, hexa-linear difference
equation for Sn.

We remark that there are solutions of the discrete system (2.39) with µ = 0 given by

qn = iun+1/un pn = ixu2
n z = ix (2.47)

where un is a solution of the special case of dPII [33, 80]

un+1 + un−1 = (2n + 1)un

x
(
1 − u2

n

) . (2.48)

The relationship between τ -functions for PIII′ and dPII (2.48) is discussed in [5, 9, 13, 29].

2.4. Determinantal form of rational solutions of PIII

Kajiwara and Masuda [49] derived representations of rational solutions for PIII in the form of
determinants, which are described in the following theorem.

Theorem 2.6. Let pk(z;µ) be the polynomial defined by
∞∑

k=0

pk(z;µ)λk = (1 + λ)µ exp (zλ) (2.49)

with pk(z;µ) = 0 for k < 0, and τn(z), for n � 1, be the n × n determinant

τn(z;µ) =

∣∣∣∣∣∣∣∣∣
p1(z;µ) p3(z;µ) · · · p2n−1(z;µ)

p0(z;µ) p2(z;µ) · · · p2n−2(z;µ)

...
...

. . .
...

p−n+2(z;µ) p−n+4(z;µ) · · · pn(z;µ)

∣∣∣∣∣∣∣∣∣ . (2.50)

Then

wn(z) = 1 +
d

dz

{
ln

[
τn−1(z;µ − 1)

τn(z;µ)

]}
= τn(z;µ − 1)τn−1(z;µ)

τn(z;µ)τn−1(z;µ − 1)
(2.51)

for n � 1, satisfies PIII with (αn, βn, γn, δn) = (2n + 2µ − 1, 2n − 2µ + 1, 1,−1).
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Remark 2.7

(i) Note that pk(z;µ) = L
(µ−k)

k (−z), where L
(m)
k (ζ ) is the associated Laguerre polynomial

(cf [4, 8, 86]), which are orthogonal polynomials on the interval 0 � ζ � ∞, with respect
to the weight function ζm exp(−ζ ), and are also defined by

L
(m)
k (ζ ) = ζ−m eζ

k!

dk

dζ k
(e−ζ ζm+k) k > −1.

(ii) The function τn(z;µ) defined by (2.50) can also be written as

τn(z;µ) = W (p1(z;µ), p3(z;µ), . . . , p2n−1(z;µ)) (2.52)

where W (ϕ1, ϕ2, . . . , ϕn) is the Wronskian defined by

W (ϕ1, ϕ2, . . . , ϕn) =

∣∣∣∣∣∣∣∣∣
ϕ1(z) ϕ2(z) · · · ϕn(z)

ϕ′
1(z) ϕ′

2(z) · · · ϕ′
n(z)

...
...

. . .
...

ϕ
(n−1)
1 (z) ϕ

(n−1)
2 (z) · · · ϕ(n−1)

n (z)

∣∣∣∣∣∣∣∣∣ (2.53)

since ∂pm

∂z
(z;µ) = pm−1(z;µ), which is immediate from (2.49).

(iii) The function τn(z;µ) defined by (2.50) satisfies the equation

(2n + 1)τn+1τn−1 = −z

[
τn

d2τn

dz2
−

(
dτn

dz

)2
]

− τn

dτn

dz
+ (z + µ)τ 2

n (2.54)

which is equation (16) in proposition 3 of [49]. Further it is straightforward, by comparing
(2.17) and (2.54), to show that

τn(z;µ) = cnSn(z;µ) cn =
n∏

j=1

(2j + 1)j−n. (2.55)

3. Algebraic solutions of PIII

3.1. Introduction

In this section we consider the special case of PIII when either (i) γ = 0 and αδ �= 0, or
(ii) δ = 0 and βγ �= 0. In case (i), we make the transformation

w(z) = (
2
3

)1/2
u(ζ ) z = (

2
3

)3/2
ζ 3 (3.1)

and set α = 1, β = 2µ and δ = −1, with µ an arbitrary constant, without loss of generality,
which yields

d2u

dζ 2
= 1

u

(
du

dζ

)2

− 1

ζ

du

dζ
+ 4ζu2 + 12µζ − 4ζ 4

u
. (3.2)

In case (ii), we make the transformation

w(z) = (
3
2

)1/2/
u(ζ ) z = (

2
3

)3/2
ζ 3 (3.3)

and set α = 2µ, β = −1 and γ = 1, with µ an arbitrary constant, without loss of generality,
which again yields (3.2). The scalings in (3.1) and (3.3) have been chosen so that the associated
special polynomials are monic polynomials. We remark that equation (3.2) is of type D7 in
the terminology of Sakai [81]; we shall refer to it as P(7)

III . Studies of properties of solutions of
(3.2) include [34, 38, 41, 56, 58, 66, 68, 73, 74].
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Rational solutions of (3.2) correspond to algebraic solutions of PIII with γ = 0 and
αδ �= 0, or δ = 0 and βγ �= 0. Lukashevich [56, 58] obtained algebraic solutions of PIII,
which are classified in the following theorem.

Theorem 3.1. Equation (3.2) has rational solutions if and only if µ = n, with n ∈ Z. These
rational solutions have the form u(ζ ) = Pn2+1(ζ )/Qn2(ζ ), where Pn2+1(ζ ) and Qn2(ζ ) are
monic polynomials of degree n2 + 1 and n2, respectively.

Proof. See Gromak et al [41], p 164 (see also [34, 38, 66, 68]). �

A straightforward method for generating rational solutions of (3.2) is through the Bäcklund
transformation

uµ+ε = ζ 3

u2
µ

+
εζ

2u2
µ

duµ

dζ
− 3(2µ + ε)

2uµ

(3.4)

where ε2 = 1 and uµ is the solution of (3.2) for parameter µ, using the ‘seed solution’
u0(ζ ) = ζ for µ = 0 (see Gromak et al [41], p 164—see also [34, 38, 66, 68]). Further we
note that u−µ(ζ ) = −iuµ(iζ ). Therefore the transformation group for (3.2) is isomorphic to
the affine Weyl group Ã1, which also is the transformation group for PII [78, 88, 90].

3.2. Associated special polynomials

Ohyama [73] derived special polynomials associated with the rational solutions of (3.2). These
are essentially described in theorem 3.2, though here the variables have been scaled and the
expression of the rational solutions of (3.2) in terms of these special polynomials is explicitly
given.

Theorem 3.2. Suppose that Rn(ζ ) satisfies the recursion relation

2ζRn+1Rn−1 = −Rn

d2Rn

dζ 2
+

(
dRn

dζ

)2

− Rn

ζ

dRn

dζ
+ 2(ζ 2 − n)R2

n (3.5)

with R0(ζ ) = 1 and R1(ζ ) = ζ 2. Then

un(ζ ) = Rn+1(ζ )Rn−1(ζ )

R2
n(ζ )

≡ ζ 2 − n

ζ
− 1

2ζ 2

d

dζ

{
ζ

d

dζ
ln Rn(ζ )

}
(3.6)

satisfies (3.2) with µ = n. Additionally u−n(ζ ) = −iun(iζ ).

Remark 3.3

(i) The first few polynomials Rn(ζ ) defined by (3.5) are given in table 4 and associated
rational solutions of (3.2) are given in table 5.

(ii) The polynomial Rn(ζ ) is a monic polynomial of degree 1
2n(n + 3) with integer coefficients.

Further it has the form Rn(ζ ) = Vn(ζ )ζ κn , with κn = 1
2n2 − 1

4 [1 − (−1)n], where Vn(ζ )

is a monic polynomial of degree 3
4n + 1

8 [1 − (−1)n] with simple zeros and Vn(0) �= 0.
These polynomials appear to be analogous to the Yablonskii–Vorob’ev polynomials for
PII and it is an open problem whether they can be expressed as Schur polynomials as is
the case for the Yablonskii–Vorob’ev polynomials [48, 50]. The polynomials Vn(ζ ) are
generated by the recurrence relation

Vn

d2Vn

dζ 2
−

(
dVn

dζ

)2

+
Vn

ζ

dVn

dζ
− 2(ζ 2 − n)V 2

n =
{−2ζ 2Vn+1Vn−1 if n even
−2Vn+1Vn−1 if n odd

(3.7)

with V0 = 1 and V1 = 1 (see theorem 3.3 in [73]).
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Table 4. Polynomials generated by (3.5) which are associated with rational solutions of P(7)
III (3.2).

R2(ζ ) = (ζ 2 − 1)ζ 3

R3(ζ ) = (ζ 4 − 4ζ 2 + 5)ζ 5

R4(ζ ) = (ζ 8 − 10ζ 6 + 40ζ 4 − 70ζ 2 + 35)ζ 6

R5(ζ ) = (ζ 12 − 20ζ 10 + 175ζ 8 − 840ζ 6 + 2275ζ 4 − 3220ζ 2 + 1925)ζ 8

R6(ζ ) = (ζ 18 − 35ζ 16 + 560ζ 14 − 5320ζ 12 − 32690ζ 10 + 133070ζ 8 − 354200ζ 6 +
585200ζ 4 − 525525ζ 2 + 175175)ζ 9

R7(ζ ) = (ζ 24 − 56ζ 22 + 1470ζ 20 − 23800ζ 18 + 263375ζ 16 − 2088240ζ 14 +
12105940ζ 12 − 51466800ζ 10 + 158533375ζ 8 − 343343000ζ 6 +
493643150ζ 4 − 421821400ζ 2 + 163788625)ζ 11

R8(ζ ) = (ζ 32 − 84ζ 30 + 3360ζ 28 − 84700ζ 26 + 1501500ζ 24 − 19787460ζ 22 +
199916640ζ 20 − 1574673100ζ 18 + 9741481750ζ 16 −
47328781500ζ 14 + 179306327200ζ 12 − 521782561300ζ 10 +
1136861225500ζ 8 − 1778744467500ζ 6 + 1860638780000ζ 4 −
1132762130500ζ 2 + 283190532625)ζ 12

Table 5. Rational solutions of P(7)
III (3.2) arising from the polynomials in table 4.

u1(ζ ) = ζ 2 − 1

ζ

u2(ζ ) = ζ(ζ 4 − 4ζ 2 + 5)

(ζ 2 − 1)2

u3(ζ ) = (ζ 2 − 1)(ζ 8 − 10ζ 6 + 40ζ 4 − 70ζ 2 + 35)

ζ(ζ 4 − 4ζ 2 + 5)2

u4(ζ ) = ζ(ζ 4 − 4ζ 2 + 5)(ζ 12 − 20ζ 10 + 175ζ 8 − 840ζ 6 + 2275ζ 4 − 3220ζ 2 + 1925)

(ζ 8 − 10ζ 6 + 40ζ 4 − 70ζ 2 + 35)2

(iii) Making the transformation

Rn(ζ ) = ζ−n(n+1) exp
(

1
8ζ 8 − 1

2nζ 2) τn(ζ ) (3.8)

in (3.5) yields the Toda equation

d

dζ

(
ζ

d

dζ
ln τn

)
+ 2

τn+1τn−1

τ 2
n

= 0. (3.9)

(iv) From equation (3.4) we have

un+1 = ζ 3

u2
n

+
ζ

2u2
n

dun

dζ
− 3(2n + 1)

2un

un−1 = ζ 3

u2
n

− ζ

2u2
n

dun

dζ
− 3(2n − 1)

2un

.

Hence eliminating dun/dζ yields the difference equation for un

un+1 + un−1 = 2ζ 3

u2
n

− 6n

un

(3.10)

which is an alternative discrete PI
′′ [26, 32] (see also [22, 43]). Thus substituting (3.6),

we see that Rn(ζ ) satisfies the fifth-order, tri-linear difference equation

Rn+2R
2
n−1 + Rn−2R

2
n+1 = 2ζ 3R3

n − 6nRn+1RnRn−1. (3.11)
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Table 6. Polynomials generated by (3.13).

U2(ζ ) = ζ 2 − 1
U3(ζ ) = (ζ 4 − 4ζ 2 + 5)ζ

U4(ζ ) = ζ 8 − 10ζ 6 + 40ζ 4 − 70ζ 2 + 35
U5(ζ ) = (ζ 12 − 20ζ 10 + 175ζ 8 − 840ζ 6 + 2275ζ 4 − 3220ζ 2 + 1925)ζ

U6(ζ ) = ζ 18 − 35ζ 16 + 560ζ 14 − 5320ζ 12 − 32690ζ 10 + 133070ζ 8 − 354200ζ 6 +
585200ζ 4 − 525525ζ 2 + 175 175

U7(ζ ) = (ζ 24 − 56ζ 22 + 1470ζ 20 − 23800ζ 18 + 263375ζ 16 − 2088240ζ 14 +
12105940ζ 12 − 51466800ζ 10 + 158533375ζ 8 − 343343000ζ 6 +
493643150ζ 4 − 421821400ζ 2 + 163788625)ζ

U8(ζ ) = ζ 32 − 84ζ 30 + 3360ζ 28 − 84700ζ 26 + 1501500ζ 24 − 19787460ζ 22 +
199916640ζ 20 − 1574673100ζ 18 + 9741481750ζ 16 −
47328781500ζ 14 + 179306327200ζ 12 − 521782561300ζ 10 +
1136861225500ζ 8 − 1778744467500ζ 6 + 1860638780000ζ 4 −
1132762130500ζ 2 + 283 190 532 625

To discuss the locations of the poles of the rational solutions of (3.2), we define the
polynomials Un(ζ ) by

U2n(ζ ) = V2n(ζ ) = ζ−3nR2n(ζ )

U2n+1(ζ ) = ζV2n+1(ζ ) = ζ−3n−1R2n+1(ζ ).
(3.12)

It is routine to show that the polynomials Un(ζ ) are generated by the recurrence relation

Un

d2Un

dζ 2
−

(
dUn

dζ

)2

+
Un

ζ

dUn

dζ
− 2(ζ 2 − n)U 2

n =
{−2Un+1Un−1 if n even
−2ζ 2Un+1Un−1 if n odd

(3.13)

with U0 = 1 and U1 = ζ . The first few polynomials Un(ζ ) are given in table 6.
In figure 4 plots of the locations of the poles of the algebraic solutions of P(7)

III (3.2)
given by un(ζ ), for n = 3, 4, . . . , 8, as defined in (5), which are equivalent to the locations
of the roots of Un(ζ ), are given. These plots show that the locations of the poles have a
very symmetric, regular structure and take the form of two ‘triangles’ in a ‘bow-tie’ shape.
For the algebraic solution u2n(ζ ), with n � 1, the poles in the ‘triangles’ are in arcs with
1, 3, . . . , 2n + 1 poles, whilst for u2n+1(ζ ), with n � 1, the poles in the ‘triangles’ are in arcs
with 2, 4, . . . , 2n + 2 poles together with a pole at the origin. These plots are invariant under
reflections in the real and imaginary axes and the poles lie in the sectors − 1

6π < arg(ζ ) < 1
6π

and 5
6π < arg(ζ ) < 7

6π .

3.3. Hamiltonian theory for P(7)
III

A Hamiltonian associated with P(7)
III (3.2) is

H(7)
III (p, q; κ) = p2q2 + 6

(
κ − 1

2

)
pq − 2ζ 3(p + q) (3.14)

which is obtained by transforming the Hamiltonian in [73, 81], and so from Hamilton’s
equations

ζ
dq

dζ
= ∂H(7)

III

∂p
ζ

dp

dζ
= −∂H(7)

III

∂p
(3.15)
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Figure 4. Poles of algebraic solutions of P(7)
III (3.2).

we obtain the system

ζ
dq

dζ
= 2pq2 + 6

(
κ − 1

2

)
q − 2ζ 3

ζ
dp

dζ
= −2p2q − 6

(
κ − 1

2

)
p + 2ζ 3.

(3.16)

Setting p = u and eliminating q in this system yields P(7)
III (3.2) with µ = κ , whilst setting

q = u and eliminating p yields (3.2) with µ = κ − 1, and so p = uµ and q = uµ−1. Now
define the auxiliary Hamiltonian function

σ = 1
6 H(7)

III (p, q;µ) + 1
2pq + 3

2µ2 = 1
6p2q2 − 1

3 (p + q)ζ 3 + µpq + 3
2µ2 (3.17)

where p and q satisfy (3.16). Then σ satisfies the second-order, second-degree equation

(
ζ

d2σ

dζ 2
− 5

dσ

dζ

)2

+ 4

(
dσ

dζ

)2 (
ζ

dσ

dζ
− 6σ

)
− 48µζ 5 dσ

dζ
= 16ζ 10. (3.18)

Conversely, if σ is a solution of (3.18), then solutions of (3.16) are given by

p = − 1

2ζ 2

dσ

dζ
q = ζ 2

[
ζ

d2σ

dζ 2 + (6µ − 5)
dσ

dζ
+ 4ζ 5

]/(
dσ

dζ

)2

.
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Since p = uµ and q = uµ−1, where uµ satisfies (3.2), then rational solutions of the
Hamiltonian system (3.16) with κ = n have the form

pn(ζ ) = Rn+1(ζ )Rn−1(ζ )

R2
n(ζ )

qn(ζ ) = pn−1(ζ ) = Rn(ζ )Rn−2(ζ )

R2
n−1(ζ )

. (3.19)

It is straightforward to show, using the relationship between solutions of (3.16) and (3.18)
together with (3.5), that rational solutions of (3.18) with µ = n have the form

σn = 1

6
p2

nq
2
n − 1

3
(pn + qn)ζ

3 + npnqn +
3

2
n2

= −1

2
ζ 4 + nζ 2 − 3

2
n +

1

6
+ ζ

d

dζ
ln Rn. (3.20)

We remark that from (3.8) we obtain

σn = −n2 − 5

2
n +

1

6
+ ζ

d

dζ
ln τn.

Also from (3.10) and (3.19) it follows that (pn, qn) satisfy the discrete system

pn+1 = 2ζ 3

p2
n

− 6n

pn

− qn qn+1 = pn.

Dividing (3.18) by ζ 10, setting µ = n and then differentiating with respect to ζ yields the
third-order equation

ζ 2 d3σn

dζ 3 − 9ζ
d2σn

dζ 2 + 6ζ

(
dσn

dζ

)2

+ (25 − 24σn)
dσn

dζ
= 24nζ 5. (3.21)

Substituting (3.20) into this equation yields the fourth-order, bilinear equation for Rn

ζ 3

[
Rn

d4Rn

dζ 4 − 4
dRn

dζ

d3Rn

dζ 3 + 3

(
d2Rn

dζ 2

)2
]

− 6ζ 2

(
Rn

d3Rn

dζ 3 − dRn

dζ

d2Rn

dζ 2

)

− 12ζ(ζ 4 − 3n − 1)

[
Rn

d2Rn

dζ 2 −
(

dRn

dζ

)2
]

− 9ζ

[
Rn

d2Rn

dζ 2 +

(
dRn

dζ

)2
]

+ 3(12ζ 4 − 16nζ 2 + 12n + 7)Rn

dRn

dζ
− 24nζ [(n + 3)ζ 2 − 3n − 1]R2

n = 0.

(3.22)

We remark that substituting (3.20) into (3.18), yields a third-order, quad-linear equation for
Rn. Therefore the polynomials Rn(ζ ) satisfy the fourth-order, bilinear equation differential
equation (3.22), the fifth-order, tri-linear difference equation (3.11), as well as the bilinear
differential-difference equation (3.5). It is straightforward to show that Rn satisfies additional
differential-difference equations. From (3.20) and (3.19), then it follows that Rn also satisfies
the quad-linear differential-difference equation

ζRnR
2
n−1

dRn

dζ
= 1

6
R2

n+1R
2
n−2 − 1

3
ζ 3(Rn+1R

3
n−1 + R3

nRn−2
)

+ nRn+1RnRn−1Rn−2

+

[
1

2
ζ 4 − nζ 2 +

3

2
n(n + 1) − 1

6

]
R2

nR
2
n−1.
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Further, we remark that substituting (3.19) into (3.16) and adding the two resulting equations
yields the tri-linear differential-difference equation

ζRnRn−1
dRn+1

dζ
− 2ζRn+1Rn−1

dRn

dζ
+ ζRnRn+1

dRn−1

dζ

= Rn+2R
2
n−1 − Rn−2R

2
n+1 + 3Rn+1RnRn−1

whilst subtracting them yields the difference equation (3.11).

4. Conclusions

In this paper we have studied properties of special polynomials associated with rational
and algebraic solutions of PIII. In particular we have demonstrated that the roots of these
polynomials have a very symmetric, regular structure. These are analogous to the results
in [19, 21], where it is shown that the roots of the polynomials associated with rational
solutions of PII and PIV also have a very symmetric, regular structure. This seems to be yet
another remarkable property of the Painlevé equations, indeed more generally of ‘integrable’
differential equations.

Bracken et al [14] show that multivortex solutions of the complex sine-Gordon and
sinh-Gordon equations on the complex plane associated with a Weierstrass-type system
given by

∂2u

∂z∂z̄
− σ ū

1 + σ |u|2
∂u

∂z

∂u

∂z̄
+

1

4
u(1 + σ |u|2) = 0 σ = ±1 (4.1)

can be expressed in terms of Tn(z;µ) defined in section 2. We remark that equation (4.1) was
derived in the context of the reduction of the O(4) nonlinear sigma model and as well the
reduction of the self-dual Yang–Mills equations and relativistic equations (cf [10, 12, 82]).

An important, well-known property of classical polynomials, such as the Hermite,
Laguerre or Legendre polynomials whose roots all lie on the real line (cf [4, 8, 86]), is
that the roots of successive polynomials interlace. For a set of classical polynomials ϕn(z),
for n = 0, 1, 2, . . . , if zn,m and zn,m+1 are two successive roots of ϕn(z), i.e. ϕn(zn,m) = 0
and ϕn(zn,m+1) = 0, then ϕn−1(ζn−1) = 0 and ϕn+1(ζn+1) = 0 for some ζn−1 and ζn+1 such
that zn,m < ζn−1, ζn+1 < zn,m+1. Further the derivatives ϕ′

n(z) and ϕ′
n+1(z) also have roots in

the interval (zn,m, zn,m+1), i.e. ϕ′
n(ξn) = 0 and ϕ′

n+1(ξn+1) = 0 for some ξn and ξn+1 such that
zn,m < ξn, ξn+1 < zn,m+1.

An interesting open question is whether there are analogous results for the polynomials
Sn(z;µ) and Rn(ζ ). Obviously there are significant differences since the polynomials Sn(z;µ)

and Rn(ζ ) have 1
2n(n + 1) and 1

2n(n + 3) complex roots, respectively, whereas the classical
polynomial ϕn(z) has real roots. The pattern of the roots of Sn(z;µ) and Rn(ζ ) is highly
symmetric and structured, suggesting that they have interesting properties. A particularly
intriguing question is whether there is any ‘interlacing of roots’ (in the complex plane),
analogous to that for classical polynomials (on the real line); though we do not expect any
specific relationship between the roots of the polynomials Sn(z;µ) and Rn(ζ ) with roots of
any classical polynomial.

To investigate a possible ‘interlacing of roots’, in figure 5 the roots of two successive
polynomials Rn(ζ ), denoted by •, and Rn+1(ζ ), denoted by ◦, are plotted for n = 4, 5, . . . , 9
and in figure 6 the roots of Rn(ζ ), denoted by •, and R′

n+1(ζ ), denoted by 
, are plotted for
n = 4, 5, . . . , 9. These figures suggest that there is some structure to the relative positions
of the roots. In particular, in figure 5 the roots of Rn(ζ ) appear to lie within triangles formed
by joining the nearest neighbours of the roots of Rn+1(ζ ), at least for small values of n.
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Figure 5. Roots of Rn(ζ ), denoted by •, and Rn+1(ζ ), denoted by ◦, for n = 4, 5, . . . , 9.

Analogously, in figure 6 the roots of Rn(ζ ) appear to lie within triangles formed by joining
the nearest neighbours of the roots of R′

n+1(ζ ), again for small values of n. A similar structure
is observed in [21] for the roots of the Yablonskii–Vorob’ev polynomials which are associated
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Figure 6. Roots of Rn(ζ ), denoted by •, and R′
n+1(ζ ), denoted by 
, for n = 4, 5, . . . , 9.

with rational solutions of PII. We feel that this ‘interlacing of roots’ for the polynomials
Rn(ζ ) warrants further analytical and numerical studies as does an investigation of the relative
locations of the roots for Sn(z;µ), Sn+1(z;µ) and their derivatives. We shall not pursue these
questions any further here.
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Further interesting open questions for the polynomials Sn(z;µ) and Rn(ζ ) are the
following.

(i) Do generating functions �(z, λ) and �(ζ, λ) for the polynomials Sn(z;µ) and Rn(ζ )

exist such that
∞∑

n=0

Sn(z)λ
n = �(z, λ)

∞∑
n=0

Rn(ζ )λn = �(ζ, λ)?

(ii) Do the coefficients of the polynomials Sn(z;µ) and Rn(ζ ) have combinatorial properties
analogous to those for the Yablonskii–Vorob’ev polynomials described in [30, 52, 83]?
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Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University
http://www.math.sci.osaka-u.ac.jp/ohyama/ohyama-home.html

[75] Okamoto K 1981 Physica D 2 525–35
[76] Okamoto K 1987 Ann. Mat. Pura Appl. 146 337–81
[77] Okamoto K 1987 Japan. J. Math. 13 47–76
[78] Okamoto K 1986 Math. Ann. 275 221–55
[79] Okamoto K 1987 Funkcial. Ekvac. 30 305–32
[80] Ramani A, Grammaticos B and Hietarinta J 1991 Phys. Rev. Lett. 67 1829–32
[81] Sakai H 2001 Commun. Math. Phys. 220 165–229
[82] Tafel J 1993 J. Math. Phys. 34 1892–907
[83] Taneda M 2000 Nagoya Math. J. 159 87–111
[84] Taneda M 2001 Japan. J. Math. 27 257–74
[85] Taneda M 2001 Physics and Combinatorics ed A N Kirillov, A Tsuchiya and H Umemura (Singapore:

World Scientific) pp 366–76
[86] Temme N M 1996 Special Functions. An Introduction to the Classical Functions of Mathematical Physics

(New York: Wiley)
[87] Umemura H 1998 Sugaku Expositions 11 77–100
[88] Umemura H 2000 Nagoya Math. J. 157 15–46
[89] Umemura H 2001 AMS Transl. 204 81–110
[90] Umemura H and Watanabe H 1997 Nagoya Math. J. 148 151–98
[91] Umemura H and Watanabe H 1998 Nagoya Math. J. 151 1–24
[92] Vorob’ev A P 1965 Differ. Equ. 1 58–9
[93] Watanabe H 1995 Hokkaido Math. J. 24 231–67
[94] Wu T T, McCoy B M, Tracy C A and Barouch E 1976 Phys. Rev. B 13 316–74
[95] Yablonskii A I 1959 Vesti Akad. Navuk. BSSR Ser. Fiz. Tkh. Nauk. 3 30–5 (in Russian)
[96] Yamada Y 2000 Combinatorial Methods in Representation Theory (Adv. Stud. Pure Math. vol 28) ed K Koike,

M Kashiwara, S Okada, I Terada and H F Yamada (Tokyo, Japan: Kinokuniya) pp 391–400
[97] Yuan W-J and Li Y-Z 2002 Canad. J. Math. 54 648–70


